652 resultados para CANARY-ISLANDS

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial variability of biomass and stable isotopes in plankton size fractions in the upper 200 m was studied in a high spatial resolution transect along 24°N from Canary Islands to Florida (January - March 2011) during Leg 8 of the Malaspina-2010 expedition (http://www.expedicionmalaspina.es) to determine nitrogen and carbon sources. Plankton samples were collected by vertical tows of a microplankton net (40 mm mesh size) and a mesoplankton net (200 mm mesh size) through the upper 200 m of the water column. Sampling was between 10:00 and 16:00 h GMT. Plankton was separated into five size fractions (40 - 200, 200 - 500, 500 - 1000, 1000 - 2000 and > 2000 mm) by gentle filtration of the samples by a graded series of nylon sieves (2000, 1000, 500, 200 and 40 mm). Large gelatinous organisms were removed before filtration. Aliquots for each size fraction were collected on pre-weighed glass-fibre filters, dried (60°C, 48 h) and stored in a desiccator before determination of biomass (dry weight), carbon and nitrogen content and natural abundance of stable carbon and nitrogen isotopes ashore. Vertical advection of waters predominated in lateral zones while the central Atlantic (30-70°W) was characterized by a strong stratification and oligotrophic surface waters. Plankton biomass was low in the central zone and high in both eastern and western sides, with most of the variability due to either large (>2000 µm) and small plankton (<500 µm). Carbon isotopes reflected mainly the advection the deep water in lateral zones. Stable nitrogen isotopes showed a nearly symmetrical spatial distribution in all fractions, with the lowest values (delta15N <1per mill) in the central zone, and were inversely correlated to carbon stable isotopes (delta13C) and to the abundance of the nitrogen-fixer Trichodesmium. Diazotrophy was estimated to account for >50% of organic nitrogen in the central zone, and even >30% in eastern and western zones. The impact of diazotrophy increased with the size of the organisms, supporting the wide participation of all trophic levels in the processing of recently fixed nitrogen. These results indicate that atmospheric sources of carbon and nitrogen prevail over deep water sources in the subtropical North Atlantic and that the zone influenced by diazotrophy is much larger than reported in previous studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three stations along a productivity gradient north of the Canary Islands were investigated for surface-water properties, particle flux, and composition (biogenic and lithogenic components, and stable nitrogen isotope composition, delta15N) and export production. Investigation sites along the east-west transect off the NW African upwelling margin included the European Station for Time-Series in the Ocean, Canary Islands (ESTOC), one location contiguous to the NW African upwelling zone in the Eastern Boundary Current (EBC) and one station north of the island La Palma (LP). The seasonality of surface-water properties along the transect was mainly influenced by the winter cooling and simultaneous phytoplankton maximum and, in addition at EBC, by nearby upwelling. Accordingly, particle flux and composition along the transect were closely linked to the winter bloom sedimentation and upwelling related enhanced plankton biomass stemming from the primary upwelling and the Cape Yubi filament at EBC. During all seasons, particle flux was highest at EBC and had the highest contribution of biogenic opal and lithogenic components, and the lowest delta15N compared to the offshore stations. But contrary to what would be expected from the productivity gradient, particle flux did not decrease from ESTOC to LP. Below the upper several hundred meters, particle flux was enhanced by additional particle input along the entire transect, manifested by an increase of flux with depth and lower delta15N values. We offer a scenario in which intermediate nepheloid layers originating from the primary upwelling as well as particle dispersion from upwelling filaments, mainly the Cape Ghir filament, impact on the trap stations as far as 700 km into the open ocean. This study contributes to our understanding of the poorly resolved biogeochemical transition between the productive shelf and subtropical gyre provinces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of 43 sediment cores from around the Canary Islands is used to characterise this region, which intersects meridional climatic regimes and zonal productivity gradients in a high spatial resolution. Using rapid and nondestructive core logging techniques we carried out Fe intensity and magnetic susceptibility (MS) measurements and created a stack on the basis of five stratigraphic reference cores, for which a stratigraphic age model was available from d18O and 14C analyses on planktonic foraminifera. By correlation of the stack with the Fe and MS records of the other cores, we were able to develop age depth models at all investigated sites of the region. We present the bulk sediment accumulation rates (AR) of the Canary Islands region as an indicator of shifts in the upwelling-influenced areas for the Holocene (0-12 ky), the deglaciation (12-18 ky) and the last glacial (18-40 ky). General observations are an enhanced productivity during glacial times with highest values during the deglaciation. The main differences between the analysed time intervals we interpret as result of the sea-level effects, changes in the extent of high productivity areas, and current intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seasonal depth stratified plankton tows, sediment traps and core tops taken from the same stations along a transect at 29°N off NW Africa are used to describe the seasonal succession, the depth habitats and the oxygen isotope ratios (delta18O(shell)) of five planktic foraminiferal species. Both the delta18O(shell) and shell concentration profiles show variations in seasonal depth habitats of individual species. None of the species maintain a specific habitat depth exclusively within the surface mixed layer (SML), within the thermocline, or beneath the thermocline. Globigerinoides ruber (white) and (pink) occur with moderate abundance throughout the year along the transect, with highest abundances in the winter and summer/fall season, respectively. The average delta18O(shell) of G. ruber (w) from surface sediments is similar to the delta18O(shell) values measured from the sediment-trap samples during winter. However, the delta18O(shell) of G. ruber (w) underestimates sea surface temperature (SST) by 2 °C in winter and by 4 °C during summer/fall indicating an extension of the calcification/depth habitat into colder thermocline waters. Globigerinoides ruber (p) continues to calcify below the SML as well, particularly in summer/fall when the chlorophyll maximum is found within the thermocline. Its vertical distribution results in delta18O(shell) values that underestimate SST by 2 °C. Shell fluxes of Globigerina bulloides are highest in summer/fall, where it lives and calcifies in association with the deep chlorophyll maximum found within the thermocline. Pulleniatina obliquiloculata and Globorotalia truncatulinoides, dwelling and calcifying a part of their lives in the winter SML, record winter thermocline (~180 m) and deep surface water (~350 m) temperatures, respectively. Our observations define the seasonal and vertical distribution of multiple species of foraminifera and the acquisition of their delta18O(shell).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Canary Islands region occupies a key position with respect to biogeochemical cycles, with the zonal transition from oligotrophic to nutrient-rich waters and the contribution of Saharan dust to the particle flux. We present the distribution of geochemical proxies (TOC, carbonate, d15N, d13Corg, C/N-ratio) and micropaleontological parameters (diatoms, dinoflagellates, foraminifera, pteropods), in 80 surface-sediment samples in order to characterise the influence of coastally upwelled water on the domain of the subtropical gyre. Results of the surface-sediment analyses confirmed the high biomass gradient from the coast to the open ocean inferred from satellite data of surface chlorophyll or SST. The distribution of total dinoflagellate cysts, the planktic foraminifera species Globigerina bulloides, the diatom resting spore Chaetoceros spp., and TOC concentration coincided well with the areas of strong filament production off Cape Ghir and Cape Yubi. The warm-water planktic foraminifera Globigerinoides ruber (white), the diatom Nitzschia spp., and the d15N-values showed the opposite trend with high values in the open ocean. Factor analyses on the planktic foraminifera species distribution indicated three major assemblages in the Canary Islands region that represent the present surface-water conditions from the upwelling influenced region via a mixing area towards the subtropical gyre.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a 3 year record of deep water particle flux at the recently initiated ESTOC (European Station for Time-series in the Ocean, Canary Islands) located in the eastern subtropical North Atlantic gyre. Particle flux was highly seasonal, with flux maxima occurring in late winter-early spring. A comparison with historic CZCS (Coastal Zone Colour Scanner) data shows that these flux maxima occurred about 1 month after maximum chlorophyll was observed in surface waters in a presumed primary source region 100 km * 100 km northeast of the trap location. The main components of the particles collected with the traps were mineral particles and carbonate, both correlating strongly with organic matter sedimentation. Mineral particles in the sinking matter are indicative of the high aeolian input from the African desert regions. Comparing particle fluxes at 1 km and 3 km depth, we find that particle sedimentation increased substantially with depth. Yearly organic carbon sedimentation was 0.6 g m**-2 at 1 km depth compared with 0.8 g m**-2 at 3 km. We hypothesize that higher phytoplankton biomass observed further north could be a source of laterally advecting particles that interact with fast sinking particles originating from the primary source region. This hypothesis is also supported by the differences in size distribution of lithogenic matter found at the two trap depths.